SkFlow (Tensorflow contrib learn) Teacher
https://www.tensorflow.org/versions/master/api_docs/python/contrib.learn.html#RunConfig
Main skFlow objects and sub objects
tf.contrib.learn.RunConfig.__init__(tf_master='', num_cores=4, verbose=1, gpu_memory_fraction=1, tf_random_seed=42, keep_checkpoint_max=5, keep_checkpoint_every_n_hours=10000)
tf.contrib.learn.TensorFlowClassifier
tf.contrib.learn.TensorFlowClassifier.__init__(n_classes, batch_size=32, steps=200, optimizer='Adagrad', learning_rate=0.1, class_weight=None, clip_gradients=5.0, continue_training=False, config=None, verbose=1)
SkFlow standard sub-objects
.bias_
.fit(X, y, monitor=None, logdir=None)
.get_params(deep=True)
.get_tensor(name)
.get_tensor_value(name)
.partial_fit(X, y)
.predict(X, axis=1, batch_size=None)
.predict_proba(X, batch_size=None)
.restore(cls, path, config=None)
.save(path)
.score(X, y, sample_weight=None)
.set_params(**params)
.weights_
tf.contrib.learn.TensorFlowDNNClassifier
SkFlow standard sub-objects
.bias_
.fit(X, y, monitor=None, logdir=None)
.get_params(deep=True)
.get_tensor(name)
.get_tensor_value(name)
.partial_fit(X, y)
.predict(X, axis=1, batch_size=None)
.predict_proba(X, batch_size=None)
.restore(cls, path, config=None)
.save(path)
.score(X, y, sample_weight=None)
.set_params(**params)
.weights_
tf.contrib.learn.TensorFlowDNNClassifier
SkFlow standard sub-objects
.bias_
.fit(X, y, monitor=None, logdir=None)
.get_params(deep=True)
.get_tensor(name)
.get_tensor_value(name)
.partial_fit(X, y)
.predict(X, axis=1, batch_size=None)
.predict_proba(X, batch_size=None)
.restore(cls, path, config=None)
.save(path)
.score(X, y, sample_weight=None)
.set_params(**params)
.weights_
tf.contrib.learn.TensorFlowDNNRegressor
SkFlow standard sub-objects
.bias_
.fit(X, y, monitor=None, logdir=None)
.get_params(deep=True)
.get_tensor(name)
.get_tensor_value(name)
.partial_fit(X, y)
.predict(X, axis=1, batch_size=None)
.predict_proba(X, batch_size=None)
.restore(cls, path, config=None)
.save(path)
.score(X, y, sample_weight=None)
.set_params(**params)
.weights_
tf.contrib.learn.TensorFlowEstimator
SkFlow standard sub-objects
.bias_
.fit(X, y, monitor=None, logdir=None)
.get_params(deep=True)
.get_tensor(name)
.get_tensor_value(name)
.partial_fit(X, y)
.predict(X, axis=1, batch_size=None)
.predict_proba(X, batch_size=None)
.restore(cls, path, config=None)
.save(path)
.score(X, y, sample_weight=None)
.set_params(**params)
.weights_
tf.contrib.learn.TensorFlowLinearClassifier
SkFlow standard sub-objects
.bias_
.fit(X, y, monitor=None, logdir=None)
.get_params(deep=True)
.get_tensor(name)
.get_tensor_value(name)
.partial_fit(X, y)
.predict(X, axis=1, batch_size=None)
.predict_proba(X, batch_size=None)
.restore(cls, path, config=None)
.save(path)
.score(X, y, sample_weight=None)
.set_params(**params)
.weights_
tf.contrib.learn.TensorFlowLinearRegressor
SkFlow standard sub-objects
.bias_
.fit(X, y, monitor=None, logdir=None)
.get_params(deep=True)
.get_tensor(name)
.get_tensor_value(name)
.partial_fit(X, y)
.predict(X, axis=1, batch_size=None)
.predict_proba(X, batch_size=None)
.restore(cls, path, config=None)
.save(path)
.score(X, y, sample_weight=None)
.set_params(**params)
.weights_
tf.contrib.learn.TensorFlowRNNClassifier
SkFlow standard sub-objects
.bias_
.fit(X, y, monitor=None, logdir=None)
.get_params(deep=True)
.get_tensor(name)
.get_tensor_value(name)
.partial_fit(X, y)
.predict(X, axis=1, batch_size=None)
.predict_proba(X, batch_size=None)
.restore(cls, path, config=None)
.save(path)
.score(X, y, sample_weight=None)
.set_params(**params)
.weights_
tf.contrib.learn.TensorFlowRNNRegressor
SkFlow standard sub-objects
.bias_
.fit(X, y, monitor=None, logdir=None)
.get_params(deep=True)
.get_tensor(name)
.get_tensor_value(name)
.partial_fit(X, y)
.predict(X, axis=1, batch_size=None)
.predict_proba(X, batch_size=None)
.restore(cls, path, config=None)
.save(path)
.score(X, y, sample_weight=None)
.set_params(**params)
.weights_
tf.contrib.learn.TensorFlowRegressor
SkFlow standard sub-objects
.bias_
.fit(X, y, monitor=None, logdir=None)
.get_params(deep=True)
.get_tensor(name)
.get_tensor_value(name)
.partial_fit(X, y)
.predict(X, axis=1, batch_size=None)
.predict_proba(X, batch_size=None)
.restore(cls, path, config=None)
.save(path)
.score(X, y, sample_weight=None)
.set_params(**params)
.weights_
Extract Data Helper Objects
Extract data from dask.Series or dask.DataFrame for predictors
Extract data from dask.Series for labels
Extract data from pandas.DataFrame for predictors
Extract data from pandas.DataFrame for labels
Extracts numpy matrix from pandas DataFrame.