SkFlow (Tensorflow contrib learn) Teacher

https://www.tensorflow.org/versions/master/api_docs/python/contrib.learn.html#RunConfig

Main skFlow objects and sub objects

tf.contrib.learn.RunConfig

tf.contrib.learn.RunConfig.__init__(tf_master='', num_cores=4, verbose=1, gpu_memory_fraction=1, tf_random_seed=42, keep_checkpoint_max=5, keep_checkpoint_every_n_hours=10000)

tf.contrib.learn.TensorFlowClassifier

tf.contrib.learn.TensorFlowClassifier.__init__(n_classes, batch_size=32, steps=200, optimizer='Adagrad', learning_rate=0.1, class_weight=None, clip_gradients=5.0, continue_training=False, config=None, verbose=1)

SkFlow standard sub-objects

.bias_

.fit(X, y, monitor=None, logdir=None)

.get_params(deep=True)

.get_tensor(name)

.get_tensor_value(name)

.partial_fit(X, y)

.predict(X, axis=1, batch_size=None)

.predict_proba(X, batch_size=None)

.restore(cls, path, config=None)

.save(path)

.score(X, y, sample_weight=None)

.set_params(**params)

.weights_

tf.contrib.learn.TensorFlowDNNClassifier

tf.contrib.learn.TensorFlowDNNClassifier.__init__(hidden_units, n_classes, batch_size=32, steps=200, optimizer='Adagrad', learning_rate=0.1, class_weight=None, clip_gradients=5.0, continue_training=False, config=None, verbose=1, dropout=None)

SkFlow standard sub-objects

.bias_

.fit(X, y, monitor=None, logdir=None)

.get_params(deep=True)

.get_tensor(name)

.get_tensor_value(name)

.partial_fit(X, y)

.predict(X, axis=1, batch_size=None)

.predict_proba(X, batch_size=None)

.restore(cls, path, config=None)

.save(path)

.score(X, y, sample_weight=None)

.set_params(**params)

.weights_

tf.contrib.learn.TensorFlowDNNClassifier

tf.contrib.learn.TensorFlowDNNRegressor.__init__(hidden_units, n_classes=0, batch_size=32, steps=200, optimizer='Adagrad', learning_rate=0.1, clip_gradients=5.0, continue_training=False, config=None, verbose=1, dropout=None)

SkFlow standard sub-objects

.bias_

.fit(X, y, monitor=None, logdir=None)

.get_params(deep=True)

.get_tensor(name)

.get_tensor_value(name)

.partial_fit(X, y)

.predict(X, axis=1, batch_size=None)

.predict_proba(X, batch_size=None)

.restore(cls, path, config=None)

.save(path)

.score(X, y, sample_weight=None)

.set_params(**params)

.weights_

tf.contrib.learn.TensorFlowDNNRegressor

tf.contrib.learn.TensorFlowDNNRegressor.__init__(hidden_units, n_classes=0, batch_size=32, steps=200, optimizer='Adagrad', learning_rate=0.1, clip_gradients=5.0, continue_training=False, config=None, verbose=1, dropout=None)

SkFlow standard sub-objects

.bias_

.fit(X, y, monitor=None, logdir=None)

.get_params(deep=True)

.get_tensor(name)

.get_tensor_value(name)

.partial_fit(X, y)

.predict(X, axis=1, batch_size=None)

.predict_proba(X, batch_size=None)

.restore(cls, path, config=None)

.save(path)

.score(X, y, sample_weight=None)

.set_params(**params)

.weights_

tf.contrib.learn.TensorFlowEstimator

tf.contrib.learn.TensorFlowEstimator.__init__(model_fn, n_classes, batch_size=32, steps=200, optimizer='Adagrad', learning_rate=0.1, clip_gradients=5.0, class_weight=None, continue_training=False, config=None, verbose=1)

SkFlow standard sub-objects

.bias_

.fit(X, y, monitor=None, logdir=None)

.get_params(deep=True)

.get_tensor(name)

.get_tensor_value(name)

.partial_fit(X, y)

.predict(X, axis=1, batch_size=None)

.predict_proba(X, batch_size=None)

.restore(cls, path, config=None)

.save(path)

.score(X, y, sample_weight=None)

.set_params(**params)

.weights_

tf.contrib.learn.TensorFlowLinearClassifier

tf.contrib.learn.TensorFlowLinearClassifier.__init__(n_classes, batch_size=32, steps=200, optimizer='Adagrad', learning_rate=0.1, class_weight=None, clip_gradients=5.0, continue_training=False, config=None, verbose=1)

SkFlow standard sub-objects

.bias_

.fit(X, y, monitor=None, logdir=None)

.get_params(deep=True)

.get_tensor(name)

.get_tensor_value(name)

.partial_fit(X, y)

.predict(X, axis=1, batch_size=None)

.predict_proba(X, batch_size=None)

.restore(cls, path, config=None)

.save(path)

.score(X, y, sample_weight=None)

.set_params(**params)

.weights_

tf.contrib.learn.TensorFlowLinearRegressor

tf.contrib.learn.TensorFlowLinearRegressor.__init__(n_classes=0, batch_size=32, steps=200, optimizer='Adagrad', learning_rate=0.1, clip_gradients=5.0, continue_training=False, config=None, verbose=1)

SkFlow standard sub-objects

.bias_

.fit(X, y, monitor=None, logdir=None)

.get_params(deep=True)

.get_tensor(name)

.get_tensor_value(name)

.partial_fit(X, y)

.predict(X, axis=1, batch_size=None)

.predict_proba(X, batch_size=None)

.restore(cls, path, config=None)

.save(path)

.score(X, y, sample_weight=None)

.set_params(**params)

.weights_

tf.contrib.learn.TensorFlowRNNClassifier

tf.contrib.learn.TensorFlowRNNClassifier.__init__(rnn_size, n_classes, cell_type='gru', num_layers=1, input_op_fn=null_input_op_fn, initial_state=None, bidirectional=False, sequence_length=None, batch_size=32, steps=50, optimizer='Adagrad', learning_rate=0.1, class_weight=None, clip_gradients=5.0, continue_training=False, config=None, verbose=1)

SkFlow standard sub-objects

.bias_

.fit(X, y, monitor=None, logdir=None)

.get_params(deep=True)

.get_tensor(name)

.get_tensor_value(name)

.partial_fit(X, y)

.predict(X, axis=1, batch_size=None)

.predict_proba(X, batch_size=None)

.restore(cls, path, config=None)

.save(path)

.score(X, y, sample_weight=None)

.set_params(**params)

.weights_

tf.contrib.learn.TensorFlowRNNRegressor

tf.contrib.learn.TensorFlowRNNRegressor.__init__(rnn_size, cell_type='gru', num_layers=1, input_op_fn=null_input_op_fn, initial_state=None, bidirectional=False, sequence_length=None, n_classes=0, batch_size=32, steps=50, optimizer='Adagrad', learning_rate=0.1, clip_gradients=5.0, continue_training=False, config=None, verbose=1)

SkFlow standard sub-objects

.bias_

.fit(X, y, monitor=None, logdir=None)

.get_params(deep=True)

.get_tensor(name)

.get_tensor_value(name)

.partial_fit(X, y)

.predict(X, axis=1, batch_size=None)

.predict_proba(X, batch_size=None)

.restore(cls, path, config=None)

.save(path)

.score(X, y, sample_weight=None)

.set_params(**params)

.weights_

tf.contrib.learn.TensorFlowRegressor

tf.contrib.learn.TensorFlowRegressor.__init__(n_classes=0, batch_size=32, steps=200, optimizer='Adagrad', learning_rate=0.1, clip_gradients=5.0, continue_training=False, config=None, verbose=1)

SkFlow standard sub-objects

.bias_

.fit(X, y, monitor=None, logdir=None)

.get_params(deep=True)

.get_tensor(name)

.get_tensor_value(name)

.partial_fit(X, y)

.predict(X, axis=1, batch_size=None)

.predict_proba(X, batch_size=None)

.restore(cls, path, config=None)

.save(path)

.score(X, y, sample_weight=None)

.set_params(**params)

.weights_

Extract Data Helper Objects

Extract data from dask.Series or dask.DataFrame for predictors

Extract data from dask.Series for labels

Extract data from pandas.DataFrame for predictors

Extract data from pandas.DataFrame for labels

Extracts numpy matrix from pandas DataFrame.





































More Tensorflow teacher information at http://rocksetta.com/tensorflow-teacher/
By Jeremy Ellis http://www.rocksetta.com or twitter https://twitter.com/rocksetta